AI przetworzy komunikaty w każdym języku
Język angielski jest uniwersalnym środkiem komunikacji w świecie biznesu. Prawie każda większa korporacja posiada obcojęzyczną stronę internetową i pracowników przeszkolonych do obsługi klienta anglojęzycznego. Lecz co w przypadku, gdy nasi klienci zdecydują porozumiewać się w ich ojczystym języku? Z pomocą przychodzi sztuczna inteligencja.
Wyobraźmy sobie sytuację, w której zarządzamy dużym biurem obsługi klienta w firmie działającej na rynkach międzynarodowych. Pewnego dnia skrzynki odbiorcze naszych pracowników zalewa fala e-maili z całego świata w różnych językach. Po nadmiernym używaniu wykrzykników oraz Caps Locka przez klientów wnioskujemy, że sytuacja jest bardzo poważna. Pracownicy nie nadążają z tłumaczeniem pojedynczych wiadomości przez translatora i odpowiadaniem na nie. Nagle rodzi nam się kryzys, bowiem nie wiemy, co się dzieje, a nie jesteśmy w stanie w minutę nauczyć osób zatrudnionych dodatkowego języka. I to właśnie jest dobry moment, aby dodać do zespołu algorytm bazujący na sztucznej inteligencji.
Międzyjęzykowe podejście do klienta
W kolejnych latach sztuczna inteligencja nie tylko wyręczy nas w monotonnych obowiązkach, ale i ułatwi zarządzanie procesem zakupowym klienta posługującego się swoim ojczystym językiem. By w pełni zrozumieć proces należy wytłumaczyć kilka najważniejszych kwestii.
Za interpretację znaczenia słów odpowiada NLU (ang. Natural Language Understanding). Podejście to umożliwia rozumienie mowy ludzkiej przez komputery. Aby móc stworzyć warunki do wykorzystywania AI w pracy z wieloma językami, należy najpierw zaprojektować odpowiednie podłoże leksykalne dla tych działań. Mowa tu o przygotowaniu tzw. przestrzeni semantycznych - zbiorów znaczeń słów i fraz podlegających przetwarzaniu w obrębie danego języka.
Dotychczas, firmy zajmujące się przetwarzaniem języka naturalnego tworzyły pojedyncze przestrzenie semantyczne. Pozwalało to na pracę tylko i wyłączeniu w obrębie jednego języka. U podstaw nowego podejścia leży stworzenie jednej wspólnej przestrzeni dla wszystkich języków, które mają być przetwarzane przez sztuczną inteligencję.
Jak poradzić sobie z niedoborem danych?
- Najlepiej posłużyć się przykładem - mówi Brychcín. - Weźmy pod lupę linie lotnicze, bo te obsługują klientów w wielu językach. Statystycznie 50% wszystkich prowadzonych rozmów jest realizowanych po angielsku, a pozostała część w 50 innych językach. Według dostępnych danych firma posiada bogatą bazę słów po angielsku, ale ubogą w pozostałych językach. Jednak dzięki wykorzystaniu wspólnej przestrzeni semantycznej, sztuczna inteligencja może skutecznie posługiwać się pozostałymi 50 językami. Jak? Odpowiedź jest prosta. Dzieje się tak, ponieważ AI jest w stanie zinterpretować znaczenie słów we wszystkich językach bazując na znaczeniach z angielskiego - dodaje.
Taki system znajduje zastosowanie nie tylko w branży lotniczej. Można go wykorzystać niemal we wszystkich sektorach, w tym. m.in. w bankowości, telekomunikacji, call center, sektorze medycznym czy administracji publicznej.
Czesi wdrażają już system u jednego z klientów
Można się spodziewać, że wkrótce rozwiązania z obszaru wielojęzycznego przetwarzania mowy zrewolucjonizują działalność wielu obszarów nowoczesnego biznesu. Mowa o m.in. aplikacjach wykorzystujących automatyczne tłumaczenia maszynowe, międzynarodowych działach obsługi klienta i elektronicznych bazach informacji.
Wśród wciąż wąskiego grona firm, które rozwijają nowoczesne rozwiązania w obszarze NLP jest SentiSquare. Czesi są na etapie wdrażania komercyjnego wielojęzycznego podejścia u jednego z klientów. Firma dotychczas swoją technologię testowała wykorzystując przestrzeń semantyczną obejmującą 6 języków należących do różnych rodzin językowych - jak twierdzą przedstawiciele firmy - efekt przerósł ich oczekiwania.
Źródło: Newseria